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Abstract— Social eye gaze is an important nonverbal 

behavior in human-human communications. Due to the rapid 

growth of the social robotics, social robots need to behave more 

and more humanlike. The present study strived to extract an 

empirical motion-time pattern of human gaze behavior while 

watching a certain video. After collecting the gaze data from an 

appropriate number of participants, we applied Gaussian 

mixture model (GMM) and Gaussian mixture regression 

(GMR) methods to elicit a pattern from their gaze behavior. A 

Bayesian Information Criterion (BIC) was used to determine 

the optimum number of components. Due to the indeterminate 

result of this criterion, we estimated a 60-component GMM to 

be suitable for this dataset. The resulting pattern from GMR 

method was visually acceptable. Although because of some 

limitations, we could not scientifically accept or reject the 

proposed model. Based on the survey, GMR results showed 

more similarity (but not significantly) to human gaze behavior 

rather than the mean pattern of people’s actual gaze pattern. 
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I. INTRODUCTION 

Due to the progressive trajectory of robotic technologies, 
social robots will have remarkable effects on the future of the 
world. The main purpose of designing social robots is to have 
an intimate interaction with people. This interaction is 
applicable for educating people, certain treatments, and some 
fields of industry.  Social robots have recently been used in the 
mentioned fields. Thus, these robots should be capable of 
performing such social behaviors in a way that their human 
users experience an easy and comfortable interaction [1]–[4]. 
Natural communication is required for this type of interaction. 
Although it seems that verbal communication is basic in 
human-human interactions, nonverbal behaviors are very 
important, too. Nonverbal communication includes eye gaze, 
gesture, etc. Using these nonverbal signals, people can express 
their mental mood and also improve their verbal 
communication. Eye gaze is even more significant than other 
nonverbal signals because it is proved in psychology that eyes 
are special cognitive stimuli with unique hardwired pathways 
in the brain dedicated to their interpretation [5].  

In order to design a gaze control system for a social robot, 
it is required to find out details about the human gaze behavior 
at first. In this paper, we try to extract an empirical motion-
time pattern from the gaze behavior of people while watching 
a certain video. In the first step, gaze data were collected from 

a number of participants, then we tried to fit a probabilistic 
model to the collected data. After finding the optimum model 
parameters, the model output was displayed on the testing 
video in order to visually validate the generated gaze pattern 
with a real human gaze pattern. 

II. BACKGROUND AND RELATED WORK 

Studies in the field of social eye gaze can be divided into 
two general categories: 

¶ Gaze pattern for diagnosis and classification 

¶ Gaze control system for social robots 

A. Gaze Pattern for Diagnosis and Classification 

Studies conducted in this category tried to use the human 
gaze pattern to classify people or diagnose some mental 
illnesses. For instance, considering the three factors of human 
cognition, visual behavior and ongoing activity, Raptis et al. 
[6] were able to conclude that human cognitive characteristics 
are reflected in the eye movements. Using eye tracking data, 
they introduced two classification tests for cognitive 
characteristics. Hoppe et al. [7] recorded eye gaze data from 
50 participants using SMI wearable glass. They firstly divided 
the participants into five personality groups; then used a 
random forest classifier to classify the gaze data into five 
clusters. They found that human personality features can be 
identified via eye gaze pattern. Rogers et al. [8] investigated 
the human eye gaze pattern in face-to-face conversation 
situation. They asked 76 participants to pair up and have a 4 
minutes conversation while wearing a pair of Tobii Pro 
Glasses 2 to record their gaze data. Using mangold 
INTERACT software to analyze the gaze data, they found out 
that each individual spends a different amount of time looking 
at each part of the other person's face (e.g. eyes, mouth, etc.), 
but this time pattern is almost constant for each person. 

On the other hand, some studies have been conducted to 
use eye gaze pattern to diagnose certain diseases or disorders 
such as Autism Spectrum Disorders (i.e. a developmental 
disorder with main symptoms of deficit in social interactions, 
communications, imaginative abilities [9], and imitation skills 
[10]). Liu et al. [11] asked 3 groups of 29 children to memorize 
6 different human faces and then recognize them from 18 new 
faces. One group consisting of children with Autism Spectrum 
Disorders (ASD) and two other groups consisting of Typically 
Developing (TD) children. They recorded the children’s eye 
gaze data using the Tobii T60 eye tracker and used the K-



means and Support Vector Machine (SVM) methods to 
propose a quite accurate criterion for diagnosing autism 
disorder in the early ages. In a more extensive study, Jones et 
al. [12] attempted to provide a model for early detection of 
children with autism by taking data from 110 infants, each at 
10 time points from 2 to 24 months. In these experiments, a 
video of a babysitter is shown to the baby and the data is 
collected by an ISCAN eye tracker. As a result of this study, a 
significant difference was observed at the age of 2 to 6 months 
between the patterns of gaze of healthy infants and those later 
diagnosed with ASD. 

B. Gaze Control System for Social Robots 

Most of the studies conducted in this category focused 
their effort on Human-Robot Interaction (HRI) field. For 
instance, Aliasghari et al. [2] used a mathematical model of 
human gaze behavior derived by Zaraki et al. [13], and tried 
to modify its coefficients by collecting gaze data from 23 
participants watching a video containing 4 social cues. The 
data was collected by a Kinect sensor. They designed a gaze 
control system and implemented it on a social robot and 
evaluated the system’s behavior by asking some other 
participants to interact with the robot. Lathuilière et al. [14] 
developed a method for controlling the robot's gaze using the 
reinforcement learning method. In this method, the robot's 
neural network learns to direct the robot's attention towards a 
direction that maximizes the number of people in its field of 
view, based on the input data consisting of the environment’s 
audio and video. The designed network is first trained using 
pre-made videos and then placed in a real environment. In this 
study, human eye tracking data was not used and also the 
criteria for changing the direction of gaze are only human 
stimuli. Yoo et al. [15] introduced a method based on fuzzy 
integrals to control the direction and attention of a robotic 
head. In this method, 7 effective environmental factors were 
recorded by the robot’s sensors and sent to the control unit. On 
the other hand, in another unit, user preferences were sent to 
the control unit as fuzzy criteria and the control unit selected 
the gaze direction. This system was tested in 6 scenarios (i.e. 
5 scenarios with human presence and 1 scenario without 
human presence). In all 6 scenarios, the gaze control system 
demonstrated a natural and real-time performance. 

III. METHOD 

A. Experiment Structure 

Due to the special conditions caused by COVID-19 
pandemic, we encountered several difficulties. As a result, we 
were not able to conduct our own designed experiment. The 
dataset used in this study was provided by Djawad 
Mowafaghian Research Center of Intelligent Neuro-
Rehabilitation Technologies (DMRCINT).  

In this part, we explain the following details of the 
experiment conducted by DMRCINT: 

¶ Participants 

¶ Eye tracking setup 

¶ Video used in the experiment 

¶ Dataset 

1) Participants 
A total number of 9 adults were asked to participate in this 

experiment, including 2 healthy adults, 3 Parkinson’s Disease 

(PD) patients with freezing of gait and 4 PD patients without 
freezing of gait. 

2) Eye Tracking Setup 
DMRCINT is equipped with a SR-Research EyeLink 

1000 Plus eye tracker. This video-based tracker is desktop-
mounted, capable of sampling binocularly at up to 2000 Hz 
and has down to 0.15° accuracy. 

During the experiment, the participant’s head is fixed in its 
position in front of the LCD monitor (as shown in Fig. 1); 
he/she is asked to watch the video that is being displayed on 
the mentioned monitor and the eye tracker sensor captures the 
coordinates of the point on the screen that is being looked at 
by the participant (i.e. the participant’s gaze data). 

3) Video Used in the Experiment 
The video used in this experiment is about 30 seconds and 

taken from inside of a subway station in Tehran, Iran. As 
shown in Fig. 2, the video is very crowded with people and 
there are lots of social stimuli in each frame. 

4) Dataset 
The tracking device (EyeLink 1000 plus) is capable of 

capturing a vast variety of parameters during the experiment 
including position, velocity, acceleration, pupil diameter, 
fixation/saccade/blink status, etc. In this study we only used 
the position of each participant’s gaze data. The sampling rate 
on this experiment is 1000 Hz. The recorded data can be 
viewed in different diagrams and graphical plots using 
EyeLink Data Viewer software. It can also export the data into 
excel files. 

B. Pattern Extraction 

Our proposed method for extracting a pattern from the 
gaze data is Gaussian Mixture Model (GMM) and Gaussian 
Mixture Regression (GMR). 

1) GMM 
Gaussian Mixture Models are probabilistic models for 

displaying normally distributed subsets within a general set. 
Generally speaking, mixture models do not need to know 
which subset each datapoint belongs to, which allows the 
model to automatically learn the subsets. It is not clear in 
advance which subset each datapoint belongs to, so this is a 
kind of unsupervised learning [16]. One of the most popular 

 

Fig. 1. Eye tracking setup at DMRCINT. 

 

TABLE I. PROPERTIES OF THE VIDEO FILE 

Property Value 

Resolution 1920x1080 

Duration 30.560 sec 

Frame rate 25 FPS 

 



ways to approximate the density of continuous or binary data 
is the mixture modeling. It provides flexibility by considering 
an appropriate tradeoff between the complexity of the model 
and the variations of available training data. The definition of 
a mixture model consisting of K components is 

 (1) 

 

where ὼᴆ is a datapoint, ὴὯ is the prior, and ὴὼᴆ ȿὯ is the 
conditional probability density function [17]. Note that the 
datapoint vector in this study is ὼᴆ ὸȟὼȟώ, the time-based 
position of the gaze. 

A Gaussian mixture model consists of two types of 
parameter values, the mixture component weights and the 
component means and covariances. For a Gaussian mixture 
model with K components, the kth component has a mean 
of ‘ᴆ and covariance matrix of ɫ and mixture component 
weight of ‰ . In order to normalize the probability 
distribution, the following constraint rules on the mixture 
component weights:  

 (2) 

 

If the component weights are not learned, they can be viewed 
as an a-priori distribution over components so 
that ὴὼװװÇÅÎÅÒÁÔÅÄװÂÙװÃÏÍÐÏÎÅÎÔװװὅ װ ‰װ . If they are 
instead learned, they are the a-posteriori estimates of the 
component probabilities given the data [16].  

 (3) 

 

 (4) 

Finally, a multi-dimensional GMM can be represented as (2), 
(3) and (4) together. 

2) Learning the Model 
The maximum likelihood estimation method for the 

mixture model parameters is performed iteratively using the 
standard Expectation-Maximization (EM) algorithm. EM is a 
simple local search technique looking for maximum 
likelihood. This method ensures a uniform increase in the 
likelihood of training set during optimization. An initial 

estimate is required for the EM algorithm. Firstly, a k-means 
clustering method is roughly applied to the data in order to 
provide the initial estimates and also to avoid getting caught 
in a weak local minimum point. Gaussian parameters are then 
obtained from the clusters found by k-means [17]. 

EM algorithm is explained in details in [18]. Here is a brief 
summary of the algorithm steps: 

a) Step 1: Initialization 

The model parameters (‰ȟ‘ȟɫ) are initialized in this step. 
In order to avoid local minima, we can use the results obtained 
by a previous k-means run for instance, as a good starting 
point. 

b) Step 2: Expectation 

Calculate the term 

 

 (5) 

c) Step 3: Maximization 

Calculate the term 

 (6) 

 

and then update the model parameters 

 (7) 

  

 (8) 

and 

 (9) 

 

Steps 2 and 3 are iterated respectively until the model 
parameters are converged. 

One drawback of EM is that the optimal number of K 
components in a model may not be already known. A common 
method for solving this problem is estimating multiple models 
by increasing the number of components and selecting the 
optimal one based on model selection criteria [17]. 

Therefore, there is a tradeoff between optimizing the 
model’s likelihood (i.e. how suitable the model is for the data) 
and minimizing the number of parameters required to encode 
the data. Various criteria have been proposed: cross-
validation, Akaike information criteria, Bayesian information 
criteria (BIC), and minimum description length are commonly 
found in the literature [17]. 

We decided to choose the BIC for this dataset. According 
to [17], the BIC score is calculated from 

 (10) 

where  
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Fig. 2. one frame of the video used in the experiment 

 

‰ ρȢ 

‰ᶻ
ὔ

ὔ
 ȟ  

ὴὼᴆ ὴὯὴὼᴆ ȿὯȢ 



 (11) 

 

and 

 (12) 

The optimum number of the components has the minimum 
BIC score. 

3) GMR 
The final step of pattern extraction is applying the 

Gaussian Mixture Regression on the mixture model. In fact, 
the GMR method reconstructs a general form for the gaze 
signals of all participants. 

In this method, time values ὼ are considered as query 
points (i.e. the points where you need to know the value) and 
the corresponding spatial values ὼ  are estimated by 
regression. For each GMM, the time and spatial values are 
separated, i.e., the mean and covariance matrix of the 
Gaussian component k are defined by 

 (13) 

 

 

For each Gaussian component k, the conditional expectation 
of ὼȟ, given ὼ, and the estimated conditional covariance of 

ὼȟ, given ὼ, are 

 (14) 

and 

 (15) 

ὼȟ and ɫȟ are mixed according to the probability that the 

Gaussian component Ὧ has, being responsible for ὼ 

 (16)  

Using (14), (15) and (16), for a mixture of K components, the 
condition expectation of ὼ, given ὼ, and the conditional 
covariance of ὼ, given ὼ, are 

 (17) 

 

C. Model Evaluation 

In order to check the validity of the output, we asked 20 
people to participate in a survey. They were asked to watch (a) 
the original video, (b) the original video with the mean and 
covariance of all participants’ gaze data corresponding to each 
frame plotted on the same frame, and (c) the original video 
with the GMR results of each frame plotted on the same frame, 
respectively. Finally, they were asked to give a Likert Scale 
score of 1 to 5 for each of the videos (b) and (c), based on how 
similar the pattern of each video was to their own gaze pattern 
from watching the video (a). 

IV. RESULTS 

We applied GMM and GMR methods to our dataset to 
extract an empirical motion-time pattern from human gaze 
behavior. At first, we calculated the BIC score for components 
up to 100. As shown in Fig. 4, the BIC score does not 
determine the optimum number of components, because the 
BIC score is almost uniformly decreasing by increasing K. 
Therefore, there is not a minimum BIC score.  

Although we did not find the optimum number of 
components, we calculated the GMM and GMR for K=5, 22, 
and 60, respectively and plotted the results. As shown in Fig. 
5, Fig. 6, and Fig. 7, black lines are the experimental data, red 
ellipses are the GMM components, thick green line is the 
reconstructed signal by GMR, and the transparent green tape 
represents the covariance at each data point. 

After applying the paired t-test on the viewpoints of the 
participants of this study regarding the two used algorithms, 
although the mean value of the GMM/GMR method (with 60 
components) was greater than the simple method (i.e. 3.45 
(SD: 1.05) versus 3.15 (SD: 1.14)), no significant difference 
was observed. The calculated T-value was 1.03 and the p-
value was 0.316 (>0.05). The overall viewpoint of the subjects 
regarding the gaze path generated via the GMM/GMR 
algorithm is considered to be between “3: moderate” and “4: 
agree” that is acceptable in this preliminary exploratory study. 
Including more participants in the study may also improve the 
results of the statistical test. 

V. LIMITATIONS AND FUTURE WORK 

Due to the special conditions caused by COVID-19 
pandemic, we were unable to conduct our desired experiment 

 

Fig. 3. A sample frame of the third video displayed at the survey. 

 

 

 
Fig. 4. BIC score of the models with K’s of up to 100. 
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at DMRCINT. The video used in this study is not compatible 
with social cues that we would like to study systematically. 
The other problem is that the participants were not completely 
healthy and we had two groups of PD patients among the 
participants which makes it difficult to generalize the obtained 
results to the gaze patterns of the humans. The purpose of this 

study was not to investigate the effects of any physical or 
mental illness on the human gaze behavior. Unfortunately, the 
mentioned problems and limitations noticeably decrease the 
validity of the results. 

For the future studies, we propose to resolve all the 
mentioned problems and limitations as much as possible. We 
also suggest using more criteria to find the optimum number 
of the components, using other clustering methods such as 
Naive Bayes to compare with GMM, using Task 
Parameterized GMM (TP-GMM) method [19], etc. In TP-
GMM method, the social cues inside the video and their 
position should be determined frame-by-frame. Then the 
trained model receives the present social cues as input and 
predicts the next cue that will be looked at. 

VI. CONCLUSION 

In this paper, we tried to use GMM and GMR methods to 
extract a motion-time pattern from human gaze behavior while 
watching a certain video (i.e. a 30 second video taken from 
inside a subway station in Tehran, Iran). Unfortunately, we 
couldn’t find the optimum number of Gaussian components 
based on the Bayesian Information Criterion. We tried 5, 22, 
and 60 components as instances to see the behavior of the 
GMR results. We plotted the GMR results on the original 
video and created a new video. 5 and 22 components resulted 
very smooth signals which are not similar to human eye’s 
motion at all. It also does not follow the social cues (the social 
cues in this video were mostly humans moving at different 
speeds in the station). The 60-component model has more 
acceptable results, because the reconstructed signal has more 
rapid movements (similar to human eyes) and has a better 
following of the social cues. Although we can visually 
confirm that 60 is the appropriate number for this model, it is 
much higher than the typical number of components used for 

 

Fig. 6. GMR result for k=22 

 

 

Fig. 7. GMR result for K=60 

 

 

Fig. 5. GMR result for K=5 

 



similar studies. As seen in Fig. 7, the Gaussian components 
overlap at many points. This means the number of the 
components are very large. Except the visual observations of 
the results, we found no other way to accept or reject the 
GMM model with 60 components for this dataset. 
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